Interaction between mechanosensitive channels embedded in lipid membrane.

Interaction between mechanosensitive channels embedded in lipid membrane.

Zhu, Liangliang;Zhao, Wei;Yan, Yuan;Liao, Xiangbiao;Bourtsalas, Athanasios;Dan, Yong;Xiao, Hang;Chen, Xi;
Journal of the mechanical behavior of biomedical materials 2019 Vol. 103 pp. 103543
153
zhu2019interactionjournal

Abstract

The study of the gating mechanism of mechanosensitive channels opens a window to the exploration of how different mechanical stimuli induce adaptive cellular behaviors of both the protein and the lipid, across different time and length scales. In this work, through a molecular dynamics-decorated finite element method (MDeFEM), the gating behavior of mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) is studied upon membrane stretch or global bending. The local membrane curvature around MscS is incorporated, as well as multiple MscL (mechanosensitive channels of large conductance) molecules in proximity to MscS. The local membrane curvature is found to delay MscS opening and diminishes moderately upon membrane stretching. Mimicking the insertion of lysophosphatidylcholine (LPC) molecules into the lipid, both downward and upward bending can active MscS, as long as the global membrane curvature radius reaches 34 nm. Based on the different MscS pore evolutions observed with the presence of one or more MscLs nearby, we propose that when coreconstituted, multiple MscL molecules tend to be located at the local membrane curvature zone around MscS. In another word, as MscL "swims around" in the lipid bilayer, it can be trapped by the membrane's local curvature. Collectively, the current study provides valuable insights into the interplay between mechanosensitive channels and lipid membrane at structural and physical levels, and specific predictions are proposed for further experimental investigations.

Citation

ID: 67760
Ref Key: zhu2019interactionjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
67760
Unique Identifier:
S1751-6161(19)30953-1
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet