Reconstruction, verification and in-silico analysis of a genome-scale metabolic model of bacterial cellulose producing Komagataeibacter xylinus.

Reconstruction, verification and in-silico analysis of a genome-scale metabolic model of bacterial cellulose producing Komagataeibacter xylinus.

Rezazadeh, Mohammad;Babaeipour, Valiollah;Motamedian, Ehsan;
Bioprocess and biosystems engineering 2020
268
rezazadeh2020reconstructionbioprocess

Abstract

In this study, a comprehensive genome-scale metabolic network of Komagataeibacter xylinus as the model microorganism was reconstructed based on genome annotation, for better understanding of metabolic growth and biosynthesis of bacterial cellulose (BC). The reconstructed network included 640 genes, 783 metabolic reactions and 865 metabolites. The model was completely successful to predict the lack of growth under anaerobic conditions. Model validation by the data for the growth of acetic acid bacteria with ethanol-limited chemostat cultures showed that there is a good agreement for the O and CO fluxes with actual growth conditions. Then the model was used to forecast the simultaneous production of BC and by-products. The obtained data showed that the rate of BC production is consistent with experimental data with an accuracy of 93.7%. Finally, the study of flux balance analysis (FBA) data showed that the pentose phosphate pathway and the TCA cycle play an important role in growth-promoting metabolism in K. xylinus and have a close relationship with BC biosynthesis. By integrating this model with various metabolic engineering and systems biology tools in the future, it is possible to overcome the common challenges in the large-scale BC production, such as low yield and productivity.

Citation

ID: 90902
Ref Key: rezazadeh2020reconstructionbioprocess
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
90902
Unique Identifier:
10.1007/s00449-020-02299-4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet