Estimation approaches in cognitive diagnosis modeling when attributes are hierarchically structured.

Estimation approaches in cognitive diagnosis modeling when attributes are hierarchically structured.

Akbay, Lokman;de la Torre, Jimmy;
psicothema 2020 Vol. 32 pp. 122-129
209
akbay2020estimationpsicothema

Abstract

Although research in cognitive psychology suggests refraining from investigating cognitive skills inisolation, many cognitive diagnosis model (CDM) examples do not take hierarchical attribute structures into account. When hierarchical relationships among the attributes are not considered, CDM estimates may be biased.The current study, through simulation and real data analyses, examines the impact of different MMLE-EM approaches on the item and person parameter estimates of the G-DINA, DINA and DINO models when attributes have a hierarchical structure. A number of estimation approaches that can result from modifying either the Q-matrix or prior distribution are proposed. Impact of the proposed approaches on item parameter estimation accuracy and attribute classification are investigated.For the G-DINA model estimation, the Q-matrix type (i.e, explicit vs. implicit) has greater impact than structuring the prior distribution. Specifically, explicit Q-matrices result in better item parameter recovery and higher correct classification rates. In contrast, structuring the prior distribution is more influential on item and person parameter estimates for the reduced models. When prior distribution is structured, the Q-matrix type has almost no influence on item and person parameter estimates of the DINA and DINO models.We can conclude that the Q-matrix type has a significant impact on CDM estimation, especially when the estimating model is G-DINA.

Citation

ID: 84461
Ref Key: akbay2020estimationpsicothema
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
84461
Unique Identifier:
10.7334/psicothema2019.182
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet