Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells.

Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells.

Salinas-Asensio, M M;Ríos-Arrabal, S;Artacho-Cordón, F;Olivares-Urbano, M A;Calvente, I;León, J;Núñez, M I;
international journal of radiation biology 2019 Vol. 95 pp. 1337-1345
305
salinasasensio2019exploringinternational

Abstract

To explore the influence of electromagnetic fields (EMFs) on the cell cycle progression of MDA-MB-231 and MCF-7 breast cancer cell lines and to evaluate the radiosensitizing effect of magnetotherapy during therapeutic co-exposure to EMFs and radiotherapy. Cells were exposed to EMFs (25, 50 and 100 Hz; 8 and 10 mT). In the co-treatment, cells were first exposed to EMFs (50 Hz/10 mT) for 30 min and then to ionizing radiation (IR) (2 Gy) 4 h later. Cell cycle progression and free radical production were evaluated by flow cytometry, while radiosensitivity was explored by colony formation assay. Generalized G1-phase arrest was found in both cell lines several hours after EMF exposure. Interestingly, a marked G1-phase delay was observed at 4 h after exposure to 50 Hz/10 mT EMFs. No cell cycle perturbation was observed after repeated exposure to EMFs. IR-derived ROS production was enhanced in EMF-exposed MCF-7 cells at 24 h post-exposure. EMF-exposed cells were more radiosensitive in comparison to sham-exposed cells. These results highlight the potential benefits of concomitant treatment with magnetotherapy before radiotherapy sessions to enhance the effectiveness of breast cancer therapy. Further studies are warranted to identify the subset(s) of patients who would benefit from this multimodal treatment.

Citation

ID: 78485
Ref Key: salinasasensio2019exploringinternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
78485
Unique Identifier:
10.1080/09553002.2019.1619951
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet