Detecting Depression Severity by Interpretable Representations of Motion Dynamics.

Detecting Depression Severity by Interpretable Representations of Motion Dynamics.

Kacem, Anis;Hammal, Zakia;Daoudi, Mohamed;Cohn, Jeffrey;
proceedings of the international conference on automatic face and gesture recognition ieee international conference on automatic face & gesture recognition 2018 Vol. 2018 pp. 739-745
157
kacem2018detectingproceedings

Abstract

Recent breakthroughs in deep learning using automated measurement of face and head motion have made possible the first objective measurement of depression severity. While powerful, deep learning approaches lack interpretability. We developed an interpretable method of automatically measuring depression severity that uses barycentric coordinates of facial landmarks and a Lie-algebra based rotation matrix of 3D head motion. Using these representations, kinematic features are extracted, preprocessed, and encoded using Gaussian Mixture Models (GMM) and Fisher vector encoding. A multi-class SVM is used to classify the encoded facial and head movement dynamics into three levels of depression severity. The proposed approach was evaluated in adults with history of chronic depression. The method approached the classification accuracy of state-of-the-art deep learning while enabling clinically and theoretically relevant findings. The velocity and acceleration of facial movement strongly mapped onto depression severity symptoms consistent with clinical data and theory.

Citation

ID: 72153
Ref Key: kacem2018detectingproceedings
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
72153
Unique Identifier:
10.1109/FG.2018.00116
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet