The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium.

The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium.

Augustin, Christoph M;Fastl, Thomas E;Neic, Aurel;Bellini, Chiara;Whitaker, John;Rajani, Ronak;O'Neill, Mark D;Bishop, Martin J;Plank, Gernot;Niederer, Steven A;
biomechanics and modeling in mechanobiology 2019
222
augustin2019thebiomechanics

Abstract

The left atrium (LA) has a complex anatomy with heterogeneous wall thickness and curvature. The anatomy plays an important role in determining local wall stress; however, the relative contribution of wall thickness and curvature in determining wall stress in the LA is unknown. We have developed electromechanical finite element (FE) models of the LA using patient-specific anatomical FE meshes with rule-based myofiber directions. The models of the LA were passively inflated to 10mmHg followed by simulation of the contraction phase of the atrial cardiac cycle. The FE models predicted maximum LA volumes of 156.5 mL, 99.3 mL and 83.4 mL and ejection fractions of 36.9%, 32.0% and 25.2%. The median wall thickness in the 3 cases was calculated as [Formula: see text] mm, [Formula: see text] mm, and [Formula: see text] mm. The median curvature was determined as [Formula: see text] [Formula: see text], [Formula: see text], and [Formula: see text]. Following passive inflation, the correlation of wall stress with the inverse of wall thickness and curvature was 0.55-0.62 and 0.20-0.25, respectively. At peak contraction, the correlation of wall stress with the inverse of wall thickness and curvature was 0.38-0.44 and 0.16-0.34, respectively. In the LA, the 1st principal Cauchy stress is more dependent on wall thickness than curvature during passive inflation and both correlations decrease during active contraction. This emphasizes the importance of including the heterogeneous wall thickness in electromechanical FE simulations of the LA. Overall, simulation results and sensitivity analyses show that in complex atrial anatomy it is unlikely that a simple anatomical-based law can be used to estimate local wall stress, demonstrating the importance of FE analyses.

Citation

ID: 69226
Ref Key: augustin2019thebiomechanics
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
69226
Unique Identifier:
10.1007/s10237-019-01268-5
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet