Stable Tb(III)-Based Metal-Organic Framework: Structure, Photoluminescence, and Chemical Sensing of 2-Thiazolidinethione-4-carboxylic Acid as a Biomarker of CS.

Stable Tb(III)-Based Metal-Organic Framework: Structure, Photoluminescence, and Chemical Sensing of 2-Thiazolidinethione-4-carboxylic Acid as a Biomarker of CS.

Qu, Xiang-Long;Yan, Bing;
Inorganic chemistry 2018
342
qu2018stable

Abstract

A novel three-dimensional microporous framework, [Tb(pddb)phen(ox)] (Tb-MOF), was synthesized hydrothermally with V-shaped 4,4'-(pyridine-2,6-diyl)dibenzoic acid (Hpddb), oxalate (ox), and 1,10-phenanthroline (phen). The framework of Tb-MOF features one-dimensional channels functionalized with pyridine-N Lewis base groups and the absence of coordinated and lattice water molecules in the structure. The Tb-MOF exhibits high thermostability (up to 385 °C) and chemical stability in a wide pH range (4-11) and common organic solvents as well as boiling water. The luminescence investigations of the Tb-MOF in common solvents, water with different pH values, and inorganic ions were performed. Results show that the Tb-MOF has high luminescence stability and the ability to probe Fe ions. Significantly, the Tb-MOF with particularly high water stability can be first developed as a highly selective and sensitive luminescent sensor for the biomarker 2-thiazolidinethione-4-carboxylic acid (TTCA) via fluorescence quenching. The low detection limit (1 ppm), reusability, and high antidisturbance together make the Tb-MOF become a promising sensor for the practical detection of TTCA in urine systems, and for the first time realize the detection of urinary TTCA through fluorescence spectrometry based on an Ln-MOF sensor.

Citation

ID: 518
Ref Key: qu2018stable
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
518
Unique Identifier:
10.1021/acs.inorgchem.8b02738
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet