Elastomeric cardiopatch scaffold for myocardial repair and ventricular support.

Elastomeric cardiopatch scaffold for myocardial repair and ventricular support.

Chachques, Juan Carlos;Lila, Nermine;Soler-Botija, Carolina;Martinez-Ramos, Cristina;Valles, Ana;Autret, Gwennhael;Perier, Marie-Cecile;Mirochnik, Nicolas;Monleon-Pradas, Manuel;Bayes-Genis, Antoni;Semino, Carlos E;
european journal of cardio-thoracic surgery : official journal of the european association for cardio-thoracic surgery 2019
250
chachques2019elastomericeuropean

Abstract

Prevention of postischaemic ventricular dilatation progressing towards pathological remodelling is necessary to decrease ventricular wall deterioration. Myocardial tissue engineering may play a therapeutic role due to its capacity to replace the extracellular matrix, thereby creating niches for cell homing. In this experimental animal study, a biomimetic cardiopatch was created with elastomeric scaffolds and nanotechnologies.In an experimental animal study in 18 sheep, a cardiopatch was created with adipose tissue-derived progenitor cells seeded into an engineered bioimplant consisting of 3-dimensional bioabsorbable polycaprolactone scaffolds filled with a peptide hydrogel (PuraMatrix™). This patch was then transplanted to cover infarcted myocardium. Non-absorbable poly(ethyl) acrylate polymer scaffolds were used as controls.Fifteen sheep were followed with ultrasound scans at 6 months, including echocardiography scans, tissue Doppler and spectral flow analysis and speckle-tracking imaging, which showed a reduction in longitudinal left ventricular deformation in the cardiopatch-treated group. Magnetic resonance imaging (late gadolinium enhancement) showed reduction of infarct size relative to left ventricular mass in the cardiopatch group versus the controls. Histopathological analysis at 6 months showed that the cardiopatch was fully anchored and integrated to the infarct area with minimal fibrosis interface, thereby promoting angiogenesis and migration of adipose tissue-derived progenitor cells to surrounding tissues.This study shows the feasibility and effectiveness of a cardiopatch grafted onto myocardial infarction scars in an experimental animal model. This treatment decreased fibrosis, limited infarct scar expansion and reduced postischaemic ventricular deformity. A capillary network developed between our scaffold and the heart. The elastomeric cardiopatch seems to have a positive impact on ventricular remodelling and performance in patients with heart failure.

Access

Citation

ID: 49394
Ref Key: chachques2019elastomericeuropean
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
49394
Unique Identifier:
ezz252
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet