The Partial Power Control Algorithm of Underwater Acoustic Sensor Networks Based on Outage Probability Minimization

The Partial Power Control Algorithm of Underwater Acoustic Sensor Networks Based on Outage Probability Minimization

Li, Yun;Su, Yishan;Jin, Zhigang;Chakravarty, Sumit;
international journal of distributed sensor networks 2016 Vol. 12 pp. -
375
li2016theinternational

Abstract

The high outage probability of an underwater wireless sensor may lead to high energy consumption. How to reduce the outage probability should be considered for underwater acoustic sensor networks (UASNs), where battery change is very difficult. Power control, which is one of the technologies to effectively reduce the outage probability, has also been developed for UASNs. However, when using the power control method with the maximum power to transmit packets, the slow fading of the signal in UASNs leads to serious accumulative interference in the receiver, which in turn leads to an even higher outage probability. Another challenge in UASNs is the complex acoustic channel condition with time-space-frequency variation and uncertain TL, which make it difficult to obtain the channel status information (CSI). To address these issues, a novel partial power control (PPC) algorithm based on outage probability minimization in UASNs is proposed. The proposed algorithm captures transmission loss (TL) using the Markov chain Monte Carlo (MCMC) method and estimates CSI in the next moment using AR prediction. The simulation results show that the proposed algorithm can effectively reduce the accumulative interference to the receiver and then reduce the outage probability by 19.3% at the maximum.

Citation

ID: 43708
Ref Key: li2016theinternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
43708
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet