Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions

Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions

Siva, Kumar D.;Babu, Naidu K. Chandra;Mohamed, Rafi M.;Prem, Nazeer K.;Ayisha, Begam A.;Ramesh, Kumar G.;
materials science-poland 2018 Vol. 36 pp. 123-133
271
siva2018structuralmaterials

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized using co-precipitation method. Their microstructure and dielectric properties were studied. The sugar solutions like glucose, fructose and sucrose were used as stabilizers to control the size of the SPIONs. The crystal structure and grain size of the particles were determined by X-ray diffraction. The magnetic studies of the samples were carried out using the vibrating sample magnetometer and their surface morphology was studied by HRTEM, FE-SEM and zeta potential. The dielectric properties of glucose-SPIONs (GF), fructose-SPIONs (FF) and sucrose-SPIONs (SF) were investigated in the frequency range of 10 Hz to 5 MHz at selected temperatures. The FF showed a high dielectric constant of 62 at 1 MHz and the dielectric properties of SPIONs were found to have been significantly improved, especially in the low frequency regime according to the Maxwell-Wagner interfacial polarization. The AC conductivity measurements revealed that the electrical conduction depends on both frequency and temperature. Impedance analysis was carried out using Cole-Cole plot and the conduction mechanism of the studied compounds was explained. R and C values were further calculated using RC-circuit.

Citation

ID: 35480
Ref Key: siva2018structuralmaterials
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
35480
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet