Protection of Primary Dopaminergic Midbrain Neurons Through Impact of Small Molecules Using Virtual Screening of GPR139 Supported by Molecular Dynamic Simulation and Systems Biology.

Protection of Primary Dopaminergic Midbrain Neurons Through Impact of Small Molecules Using Virtual Screening of GPR139 Supported by Molecular Dynamic Simulation and Systems Biology.

Kaushik, Aman Chandra;Gautam, Deeksha;Nangraj, Asma Sindhoo;Wei, Dong-Qing;Sahi, Shakti;
interdisciplinary sciences, computational life sciences 2019 Vol. 11 pp. 247-257
278
kaushik2019protectioninterdisciplinary

Abstract

GPCR share a common structural feature, i.e., the presence of seven trans-membrane helices having three intracellular and three extracellular loops. The carboxyl terminal is intracellular whereas amino terminal is extracellular. Various conformational changes are observed in structure of GPCR during the binding with ligand, coupling with G protein and interaction with other proteins. In Rhodopsin class of GPCR the basic structure of GPCR is resolved by X-ray crystallography. Ligand acts as an extracellular stimulus for GPCRs to bring physiological changes in organisms. GPR139 has been found to have effective physiological role in primary dopaminergic midbrain neurons and in central nervous system. Recent reports suggested that the ligand of GPR139 protein inhibits the growth of primary dopaminergic midbrain neurons in central nervous system. These discoveries indicated the potential involvement and influence of GPR139 protein in central nervous system METHOD: Therefore, we used multi-approach analysis to investigate the role of GPR139 in the molecular mechanisms of central nervous system. In silico screening was performed to study compound 1 binding with GPR139 protein in their predicted three-dimensional structures. Compound 1 was subjected to molecular dynamics (MD) simulation and stability analysis.The results of MD analysis suggested that the loop region in GPR139 protein structure could affect its binding with drugs. Finally, we cross-validated the predicted compound 1 through systems biology approach. Our results suggested that GPR139 might play an important role in primary dopaminergic midbrain neurons therapy.

Citation

ID: 32074
Ref Key: kaushik2019protectioninterdisciplinary
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
32074
Unique Identifier:
10.1007/s12539-019-00334-x
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet