Small Area Estimation of Cancer Risk Factors and Screening Behaviors in US Counties by Combining Two Large National Health Surveys.

Small Area Estimation of Cancer Risk Factors and Screening Behaviors in US Counties by Combining Two Large National Health Surveys.

Liu, Benmei;Parsons, Van;Feuer, Eric J;Pan, Qiang;Town, Machell;Raghunathan, Trivellore E;Schenker, Nathaniel;Xie, Dawei;
preventing chronic disease 2019 Vol. 16 pp. E119
252
liu2019smallpreventing

Abstract

National health surveys, such as the National Health Interview Survey (NHIS) and the Behavioral Risk Factor Surveillance System (BRFSS), collect data on cancer screening and smoking-related measures in the US noninstitutionalized population. These surveys are designed to produce reliable estimates at the national and state levels. However, county-level data are often needed for cancer surveillance and related research.To use the large sample sizes of BRFSS and the high response rates and better coverage of NHIS, we applied multilevel models that combined information from both surveys. We also used relevant sources such as census and administrative records. By using these methods, we generated estimates for several cancer risk factors and screening behaviors that are more precise than design-based estimates.We produced reliable, modeled estimates for 11 outcomes related to smoking and to screening for female breast cancer, cervical cancer, and colorectal cancer. The estimates were produced for 3,112 counties in the United States for the data period from 2008 through 2010.The modeled estimates corrected for potential noncoverage bias and nonresponse bias in the BRFSS and reduced the variability in NHIS estimates that is attributable to small sample size. The small area estimates produced in this study can serve as a useful resource to the cancer surveillance community.

Citation

ID: 28369
Ref Key: liu2019smallpreventing
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
28369
Unique Identifier:
10.5888/pcd16.190013
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet