Comparative Appraisal of Three Low-Cost GPS Speed Sensors with Different Data Update Frequencies

Comparative Appraisal of Three Low-Cost GPS Speed Sensors with Different Data Update Frequencies

Akkamis, Mustafa;Keskin, Muharrem;Sekerli, Yunus Emre;
AgriEngineering 2021 Vol. 3 pp. 423-437
85
akkamis2021comparativeagriengineering

Abstract

Low-cost GPS (Global Positioning System) speed sensors have been available to quantify vehicle speed on different platforms including agricultural tractors in precision agriculture applications such as yield monitoring, variable rate fertilizer and pesticide applications. One of the advances in low-cost GPS receivers is the higher data update frequencies. However, we found no studies on the accuracy of low-cost GPS speed sensors with different update frequencies, especially under variable speed conditions. Thus, this work investigated the effect of the update frequency on the accuracy of low-cost GPS speed sensors under both constant and varying speed conditions. Three GPS speed sensors with update frequencies of 1 Hz, 5 Hz and 7 Hz (GPS1Hz, GPS5Hz and GPS7Hz) were simultaneously tested under the same conditions. A total of 144 tests were conducted on three different days and at three different times of each day with four speed levels and four repetitions. The percent errors were found to be up to 2.3%, 1.8% and 1.4% at constant speeds; up to −47%, −16% and −12% at the increasing speeds and 24%, 6% and 5% at the decreasing speeds, depending on the acceleration and deceleration levels, for GPS1Hz, GPS5Hz and GPS7Hz, respectively. The differences among the error values of the GPS speed sensors were found to be statistically significant (p < 0.05). The GPS speed sensors with higher update frequencies (5 and 7 Hz) provided higher accuracy compared to the one with lower frequency (1 Hz), particularly in the case of higher acceleration conditions. In sum, low-cost GPS speed sensors with higher update frequencies should be used for better accuracy, especially in variable speed conditions.

Citation

ID: 275616
Ref Key: akkamis2021comparativeagriengineering
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
275616
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet