automatic airport recognition based on saliency detection and semantic information

automatic airport recognition based on saliency detection and semantic information

;Yetianjian Wang;Li Pan
población y desarrollo 2016 Vol. 5 pp. 115-
192
wang2016isprsautomatic

Abstract

Effectively identifying an airport from satellite and aerial imagery is a challenging task. Traditional methods mainly focus on the use of multiple features for the detection of runways and some also adapt knowledge of airports, but the results are unsatisfactory and the usage limited. A new method is proposed to recognize airports from high-resolution optical images. This method involves the analysis of the saliency distribution and the use of fuzzy rule-based classification. First, a number of images with and without airports are segmented into multiple scales to obtain a saliency distribution map that best highlights the saliency distinction between airports and other objects. Then, on the basis of the segmentation result and the structural information of airports, we analyze the segmentation result to extract and represent the semantic information of each image via the bag-of-visual-words (BOVW) model. The image correlation degree is combined with the BOVW model and fractal dimension calculation to make a more complete description of the airports and to carry out preliminary classification. Finally, the support vector machine (SVM) is adopted for detailed classification to classify the remaining imagery. The experiment shows that the proposed method achieves a precision of 89.47% and a recall of 90.67% and performs better than other state of the art methods on precision and recall.

Citation

ID: 259085
Ref Key: wang2016isprsautomatic
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
259085
Unique Identifier:
10.3390/ijgi5070115
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet