radical decomposition of 2,4-dinitrotoluene (dnt) at conditions of advanced oxidation. computational study

radical decomposition of 2,4-dinitrotoluene (dnt) at conditions of advanced oxidation. computational study

;Liudmyla K. Sviatenko;Leonid Gorb;Sergiy I. Okovytyy;Jerzy Leszczynski
applied and environmental soil science 2016 Vol. 24 pp. 56-61
193
sviatenko2016vsnikradical

Abstract

At the present time one of the main remediation technologies for such environmental pollutant as 2,4-dinitrotoluene (DNT) is advanced oxidation processes (AOPs). Since hydroxyl radical is the most common active species for AOPs, in particular for Fenton oxidation, the study modeled mechanism of interaction between DNT and hydroxyl radical at SMD(Pauling)/M06-2X/6-31+G(d,p) level. Computed results allow to suggest the most energetically favourable pathway for the process. DNT decomposition consists of sequential hydrogen abstractions and hydroxyl attachments passing through 2,4-dinitrobenzyl alcohol, 2,4-dinitrobenzaldehyde, and 2,4-dinitrobenzoic acid. Further replacement of nitro- and carboxyl groups by hydroxyl leads to 2,4-dihydroxybenzoic acid and 2,4-dinitrophenol, respectively. Reaction intermediates and products are experimentally confirmed. Mostly of reaction steps have low energy barriers, some steps are diffusion controlled. The whole process is highly exothermic.

Citation

ID: 246027
Ref Key: sviatenko2016vsnikradical
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
246027
Unique Identifier:
10.15421/081608
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet