Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors.

Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors.

Tofanello, Aryane;Araujo, Juscemácia N;Nantes-Cardoso, Iseli L;Ferreira, Fabio F;Souza, José A;Lim, Dae-Woon;Kitagawa, Hiroshi;Garcia, Wanius;
colloids and surfaces b, biointerfaces 2018 Vol. 176 pp. 47-54
332
tofanello2018ultrafast

Abstract

Solid-state ionic conductor is an essential and critical part of electrochemical devices such as batteries and sensors. Nano-sized silver iodide (AgI) is the most promising ionic conductor due to its superionic conductivity at room temperature. In recent years, proteins have been used as organic templates to obtain high-performance solid-state ionic conductors as well as to extend their applications in a biosensor. Here, we report the unprecedented ultrafast synthesis of thermally stable protein-coated AgI nanoparticles (NPs) through the photo-irradiation method for solid-state electrolyte. The synthesis was performed using a hyperthermostable bacterial β-glucosidase. The protein-coated AgI NPs with an approximate diameter of 13 nm showed that the controllable transition from the α- to β-/γ-phase was drastically suppressed down to 41 °C in the cooling process. After drying, the product represents a thermally stable organic-inorganic hybrid system with superionic conductivity. It is noteworthy that the superionic conductivity (σ ˜ 0.14 S/cm at 170 °C) of thermally stable protein-coated AgI NPs is maintained during several thermal cycles (25-170 °C). To our knowledge, this is the first report showing the diffusion of mobile Ag ions on the surface of the AgI NPs through a protein matrix. The facile synthesis method and high performance of the protein-coated AgI NPs may provide a latent application in the mass production of nanobatteries and other technological applications.

Citation

ID: 209
Ref Key: tofanello2018ultrafast
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
209
Unique Identifier:
S0927-7765(18)30939-1
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet