G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes.

G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes.

Roque, Cláudio;Mendes-Oliveira, Julieta;Baltazar, Graça;
Journal of Neurochemistry 2019 Vol. 149 pp. 27-40
281
roque2019gjournal

Abstract

Selective activation of the G protein-coupled estrogen receptor has been proposed to avoid some of the side effects elicited by the activation of classical estrogen receptors α and β. Although its contribution to neuroprotection triggered by estradiol in brain disorders has been explored, the results regarding ischemic stroke are contradictory, and currently, there is no consensus on the role that this receptor may play. The present study aimed to investigate the role of GPER in the ischemic insult. For that, primary cortical cultures exposed to oxygen and glucose deprivation (OGD) were used as a model. Our results demonstrate that neuronal survival was strongly affected by the ischemic insult and concurrent GPER activation with G1 had no further impact. In contrast, OGD had a smaller impact on astrocytes survival but G1, alone or combined with OGD, promoted their apoptosis. This effect was prevented by the GPER antagonist G15. The results also show that ischemia did not change the expression levels of GPER in neurons and astrocytes. In this study, we also demonstrate that selective activation of GPER induced astrocyte apoptosis via the phospholipase C pathway and subsequent intracellular calcium rise, whereas in neurons, this effect was not observed. Taken together, this evidence supports a direct impact of GPER activity on the viability of astrocytes, which seems to be associated with the regulation of different signaling pathways in astrocytes and neurons.

Citation

ID: 19994
Ref Key: roque2019gjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
19994
Unique Identifier:
10.1111/jnc.14648
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet