Predicting MCI Status From Multimodal Language Data Using Cascaded Classifiers.

Predicting MCI Status From Multimodal Language Data Using Cascaded Classifiers.

Fraser, Kathleen C;Lundholm Fors, Kristina;Eckerström, Marie;Öhman, Fredrik;Kokkinakis, Dimitrios;
frontiers in aging neuroscience 2019 Vol. 11 pp. 205
296
fraser2019predictingfrontiers

Abstract

Recent work has indicated the potential utility of automated language analysis for the detection of mild cognitive impairment (MCI). Most studies combining language processing and machine learning for the prediction of MCI focus on a single language task; here, we consider a cascaded approach to combine data from multiple language tasks. A cohort of 26 MCI participants and 29 healthy controls completed three language tasks: picture description, reading silently, and reading aloud. Information from each task is captured through different modes (audio, text, eye-tracking, and comprehension questions). Features are extracted from each mode, and used to train a series of cascaded classifiers which output predictions at the level of features, modes, tasks, and finally at the overall session level. The best classification result is achieved through combining the data at the task level (AUC = 0.88, accuracy = 0.83). This outperforms a classifier trained on neuropsychological test scores (AUC = 0.75, accuracy = 0.65) as well as the "early fusion" approach to multimodal classification (AUC = 0.79, accuracy = 0.70). By combining the predictions from the multimodal language classifier and the neuropsychological classifier, this result can be further improved to AUC = 0.90 and accuracy = 0.84. In a correlation analysis, language classifier predictions are found to be moderately correlated (ρ = 0.42) with participant scores on the Rey Auditory Verbal Learning Test (RAVLT). The cascaded approach for multimodal classification improves both system performance and interpretability. This modular architecture can be easily generalized to incorporate different types of classifiers as well as other heterogeneous sources of data (imaging, metabolic, etc.).

Citation

ID: 15003
Ref Key: fraser2019predictingfrontiers
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
15003
Unique Identifier:
10.3389/fnagi.2019.00205
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet