Land surface temperature estimating in urbanized landscapes using artificial neural networks.

Land surface temperature estimating in urbanized landscapes using artificial neural networks.

Bozorgi, Mahsa;Nejadkoorki, Farhad;Mousavi, Mohammad Bagher;
Environmental monitoring and assessment 2018 Vol. 190 pp. 250
340
bozorgi2018landenvironmental

Abstract

Scenario-based land surface temperature (LST) modeling is a powerful tool for adopting proper urban land use planning policies. In this study, using greater Isfahan as a case study, the artificial neural network (ANN) algorithm was utilized to explore the non-linear relationships between urban LST and green cover spatial patterns derived from Landsat 8 OLI imagery. The model was calibrated using two sets of variables: Normalized Difference Built Index (NDBI) and Normalized Difference Vegetation Index (NDVI). Furthermore, Compact Development Scenario (CDS) and Green Development Scenario (GDS) were defined. The results showed that GDS is more successful in mitigating urban LST (mean LST = 40.93) compared to CDS (mean LST = 44.88). In addition, urban LST retrieved from the CDS was more accurate in terms of ANOVA significance (sig = 0.043) than the GDS (sig = 0.010). The findings of this study suggest that developing green spaces is a key strategy to combat against the risk of LST concerns in urban areas.

Citation

ID: 12794
Ref Key: bozorgi2018landenvironmental
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
12794
Unique Identifier:
10.1007/s10661-018-6618-2
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet