Experimental and numerical study on the mechanical properties of cortical and spongy cranial bone of 8-week-old porcines at different strain rates.

Experimental and numerical study on the mechanical properties of cortical and spongy cranial bone of 8-week-old porcines at different strain rates.

Li, Zhigang;Wang, Jian;Wang, Jiawei;Wang, Jinjin;Ji, Cheng;Wang, Guangliang;
biomechanics and modeling in mechanobiology 2020
358
li2020experimentalbiomechanics

Abstract

Pediatric porcines have widely been used as substitute for children in biomechanical research. Previous studies have used entire piglet cranium when testing their properties. Here, the piglet craniums from the frontal and parietal locations were carefully dissected into spongy and cortical part, and tensile tests at different strain rates were then conducted on these two bone types. It is found that the elastic modulus, yield stress, and ultimate stress of the cortical bone were all significantly higher than those of the spongy bone. The ultimate strains of the cortical and spongy bone were similar. Overall, the effect of the position on the mechanical properties did not reach significance. Cortical bone strength from the frontal location was slightly higher than that obtained from the parietal location; however, spongy bone did not show this location difference. The mechanical properties of both the cortical and spongy bone are significantly strain-rate dependent. Specifically, the elastic modulus, yield stress, and the ultimate stress of the cortical bone increased by approximately 123%, 63%, and 50%, respectively, with strain rates ranging from 0.001 to 10/s. For spongy bone, increases were approximately 128%, 73%, and 77%, respectively. Ultimate strain decreased by approximately 37% and 7% for cortical and spongy bone, respectively. An elastic-plastic constitutive model incorporating with strain rate based on a combined exponential and logarithmic function was proposed and implemented into LS-DYNA through user-defined material. The developed model and the subroutine code successfully simulated the strain-rate characteristics and the fracture process of the bone samples.

Citation

ID: 105178
Ref Key: li2020experimentalbiomechanics
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
105178
Unique Identifier:
10.1007/s10237-020-01309-4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet